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C~;ING STEIN’S ESTIMATOR TO PREDICT UN I VE RSE SCORES
FROM OBTA INE D SCORES

The purpose of this  paper is to introduce and apply a recently
.t.,vt 1~~~ed ~;t at i s t ica l method for  e s tima t i ng  t rue (populat ion) scores
i rum .‘L~ erved ~. sample) s c o r e s .  Provided that  at least three scores
. t i o  available , t h i s  method overall w i l l  givi .’ more accurate true score
~~t imatcs than the ind ividua l  maximum likelihood es t imates  ( MLE) ,
z ej i r d l e s~ ~f the t r u e  a b i l i t i e s  of the examinees (Ef ro r i  ~. Morr is ,
l ’~~7) Th~ method can be used withou t  knowledge of the (Bayes ian)

1 i t ~. i r i b u t ion , and n o r m a li t y  of the t rue scores being est imated
:.ot be asstjmed. The theoretical and practical implications of

t~~~t~~~~~ ~~~d ~~xtv:.J beyond psychological measureme~~t t~ the very founda-
o: s~ , t t i . t i c.t~ iz . ~~’rcTo . ’ and have caused nomo t u m u l t  in  that d i s —

~~. i t . ;  !.t~~ ~~~~~ .t~ ~~~~~

HIS~ RIVAL ‘~}:kVI~ w

~r : t C i a u s .~ .ix. uist r lt .utro: , the average is the Uo,~ t estimator
‘ri. t!uk i~s~~t : . ,  w . The average is said t o  be unbiased ” because no

s i n . ;  It v.i ~~~~ o~ w is .~v .. r ed v ’r a ny  otht’r valuv . That is, the cx—
•e~~ ~, i i i r  of the avet t le , ~~. t’~ uals ‘!iC trw~ value f ~~~, regardless

o~ the v~tiue of s. Uow many unhia’;~d ,•sL rma t~~’. o~ 9 are there? An
i r i nt t c  number . Hut , none ot them estimates ~ perfectly. The expected

~tred err or o~ estunat ~~ . :. f ~ thu avura;~.’ is low,’r nan that tor any
c’~.er linear or nonlinear and unk-iased function of the data.

A tt1 ar u z k fror~ t n i s  c la ssi c a l  a; i r  .ach assumes that unbiased est~ —
natus of .. a r ’  :.~ ~~ :.ly ~iefhod~ ty which t.o infer po;’ulation values.
For exampl.’, o~ her ~~s:tibl.’ “stimates 0! ‘4 coul~ be the median , x/~ . 2x ,
t hi’ mode, e ’c. A l l  ;u~ h estimators can be compared through a risk func-

whrcn i s  the expe ted va lue  of the s~~ared error for every possible
value of ~~~. Plots  of r i s k  f u n c t i o n s  show that there is no estimator
w i t h  a r r s ~ f u n c t o : .  that is everywhere lower than the risk function of
the average. i , ~ rovided that a~~~lngle  mean is being estimated. But in
the more general case , a score is available from each of many examrnees
who ha ’.v taken a t es t ,  fL! exasq ie, and it is the true score of each
“xamrnee that i~~ to  be inferred . Thus, the MLE Is merely a specific
cas~ ot  tn~-~ more general situation where the mean scores (9’s) are

~~ r~ ht for ea:h rxasrinee .

Theoretical work conducted by Stein (1955) and by James and Stein
(l ’tl) concentrated on estimating several unknown means, through methods

her than maximum likelihood estimation . The authors assm*d that the

~.‘ans are independent o’ each other and that the goodness of var ious
estimators can be assessed by a risk function : the sum of the expected
values of the squared errors of estimation for all of the individual

1  
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means. Also, it is not necessary to assume that the means being esti-
mated come from normal distributions. What James and Stein proved is
that when three or more means (9 values) are being estimated , it is a
less than optima l solution Vinac~~issible ”) to estimate each 9 from its
own average . That is, estimation rules can be found with smaller total
risk regardless of the values of the true means (9’s) for each examinee.
A.~ Efron and Morris (1975) express this accomplishment:

Charles Stein showed that it is possible to make a uniform
improvement on the maximum likelihood estimate (MLE) in
terms of total squared error risk when estimating several
parameters. . . . This achievement leads iamediately to a
uniform , nontrivial improvement over the least squares

:.~u~ s-Markov) estimators for the parameters in the usual
formulation of the linear modsi (p. 311).

THE STEIN EST IMATOR

~~~~ ~,llowiro; discussion serves as an in t roduct ion t o  the Stein

es’. imator. Assume that we have k parameters 
~l

’ 
~~~ ~~

9
k’ 

k ~ 3 , and

oit for  ea.. n 
~ 

we observe an independent normal variate x. with mean

E x 9 , and variance Var Cx ) — 1. Mote that each x might be the
~~i

i 3. 9i ~ 2 2
~ f n independent observation:; Y~~~ n (w , ) .  Then x

1 
a (9~ . ~‘ /n ) ,

and a change at scale transforms ‘/n to the more convenient value of

1. Therefore , the above assumption. often occur as a reduction from

r r n z e  complicated ~. i t u a t i ’ns to this canonical form .

The primary objective for applying the set of estimation rules is

to estimate the unknown vector of means 9, 9 (9~ , 92’••’
9
k~~

• The

;vrforaance of an estimation rule is assessed by computing the sum of

squared cosponeAt errors that is the squared error loss for that esti-

mation rule. If • 
~‘1~ ‘2 ’ • • •  k~ 

is an estimation rule, where I ,
....

is the estimate of 9 • than th. squared error loss L(9, . )  is defined.. k ~
as ~~~ • ) :. — 

~~

i — I  ~ i

In the case of the maximum likelihood estimator , or the sample

mean, denoted by (X) , CX) (J’
~ (X), f~ (X),...J~~(X))
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there is a constant risk , R • with R(9, 1 (IC) ) R(G, IC) • E Z
2 ~~1 — 1

Cx - • k. (Note that E
9 

indicates the expectation over the dis-
tribut ion x j~~ 

m d  
N(9., 1) introduced above . Observe that E (x - w )~3. m ‘- m 9

— 1  tor each i ,  m 1....k.)

The Stain estimator may be used to estimate 9. Define the Stein
1 -  l~~estimator, I (X) (11

( X ) .  !
4
(X)....f

k
(X). k 3. as follows :

1 -  / (k - 2)’: CX ) + Ii — —1 (x — .. )
1 1~~~~~ S / m x

where : C.. . 
~~~ 

rep resents an initial guess at the true mean , 9 ,
and s is defined by S Y ( x ~ - 1 4 ) 2 . This es t imator  thus has risk

R ( Q , .~~ ( X ) ) r,~, 
~ • ~ 

(.
‘
~~ 

( X )  — 9 ) 2 
1k  — — 

2 — ~. ) 2 
k

~~r all 9. it 9 , — for all i, the risk is 2, which compares quite

favorably to k obtained for the sample mean . In any event , the r isk

~cr the S~ cifl estimator is less than that for the maximum likelihood

ea.timator. A discussion of how the risk for  the S te in  estimator was

obtained is presented in the last section of this paper.

The Stein estimator has a very natural interpretation in an empiri-

cal i~ayes context.  If the 9~ themselves are a sample from a prior dis-

t r ib u t i o n , ~ N (~ 
~~ 1 l . . . k,  then the Bayes estima te of 9 .

1 1 
* 

1
the .“. :‘:

‘ mean of ‘
~ 

ziven the data, and .‘ (x
~
) is defined by

f . (x
i
) — £9 Ix~ — + 

(i 
— 

1 + ~2 )  
x1 

—

In th. empirical Bayes situation, ~
2 is unknown , but it can be

estima t ed because marqinally the x~ are independently normal with means

and 5 ! - ~~~ )
2 

~~ + ~~~ )(~, where i~ a chi-square distrib-

ution with k d.qr.es of freedom. Given that k ~~. 3, the unbiased estimate

(k - 2) 1E — 

~ 
.~~~~ is available.

3
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Substituting -j—-
2 for the unknown 

1 ~~ in the Bayes estimate
. results in ~~~ . + (i — (5 , - l4~~~) .  which is the Stein estimator.

Predict ing B a t t in g  Averages Usmr)g~ the Stein Estimator

The fo l lowing example is adapted from Efron and Morr is  ( 1975,
1977) .  Batting ave rages for major league baseball players,  based upon
their  f i r s t  4b t imes at bat , were obtained . The obj ective was to pre-
J i . t  each pla yer ’s batting average for the remainder of the season . A

~ut~~t t a f t e r  the f i r s t  45 times at bat was chosen because tha t number
was large enough to insure a satisfa~~ory approximation to the binomial

~1rstribution by the normal distribution and because the vast ma)ority
~ t “at bats” for the season would be estimated . The model assumes that
~ rt s .x~ ur according to a binomial d!stribution with independence be-
twee n ~ 1ayers. ( Requir ing  the game number of t r i a l s  for all p layers ,
n — 45 , assures equal var iances ;  however , the S te in  e s t ima to r  can also
he used when var iances  are unequal.  See Ef ron  and M or r i s ,  1975.)

L.et Y be the batting avem ge of player x , 1 — 1.. . . k  (k — 12)

after the first 45 times at bat. Assume that nY m d  B i n (n ,

— l,...l.., where p. is the true season batting average , i.e.,

LY —
1 1

Because the var iance of Y depends upon the mean , the arc-sin
t r a n sf or m a t i o n  for s t a b i l i z in g  the variance of a binomial d is t r ibut ion

is applied : x — f 15
(Y ) ,  where f (y) — n’~arc—sin (2y — 1) .  I t  c .~~:

be shown that this transformation results in x~ having nearly unit

.ariance independent of

The mean ~ of x is given by 9 - f (p ) .  Values of Y ,  ; ,
1 

3. i n i 1 2 i

~~
, 

~~
, and 

~ 
are listed for players 1. through 12 in Table 1. Batt ing

averages for the first 45 times at bat are listed in column 1. Each

player received from 270 to 590 additional “trials” during the season .

The batting averages for this seasonal trial number are listed in
column 2.  Recall that the objective here is to predict each player ’s

column 2 (“ true ,” “popula tion ”) valu~ using the ini t ia l ly  obtained

column 1 (“ sample ”) value.

— -~~~ ,~~~~. ~~~~~~~~~
. 
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Table 1

Example Using Batting Averages From 12 Players

(1) (2) (3) (4) (5) (6)

p r 1
1. i i 1. 1 1

.4u0 .346 —1.35 —2.10 —2.49 .3~ 9

. 3 ’~ . _ “~t~ —1.66 — 2 . 7 9  — 2.60  .311

.3 Se .27 t ,  — 1 . 9 7  — 3 . 1 1  — 2 . 7 1  .303

.33 3 .222  —2 .28 — 3 . 9 6  — 2 . 8 2  .296

.311 .270 - ‘ .60 - 3 . 2 0  — 2 . 9 3  .2 87

~~~~ .2 63 — 2 .9. — 3 . 32 — 3 . 0 3  .283

...44 ~~~~ — 3 . 6 0  — 3 . 2 3  — 3 . 2 ( ’  .265

.222 .30 3 -3.95 — 2 . 7 1  —3.40  .258

.2 2 2  .2 t 4  — 3 . 9 5  — 3 . 3 0  — 3 . 4 0  .258

.2 2 2  . 2 2 ~ — 3.95 — 3 . 8 9  -3 .40  .258

.200 .285 — 4 . 3 2  — 2 . 9 8  -3 .53  . 249

.178 .316 —4 .70 — 2 . 5 3  —3.66 .241

Note . Lis t ing of the MLE Scores and Estimated Universe Scores (columns
1 and 2 ) ,  Score Transformations (columns 3, 4 , and 5) ,  and the
Estimated Universe Score from usinq Stein ’s estimator (column 6) .

The x~ values obtained upon application of the arc-sin transforma-

tion to the column 1 batting averages (observed scores) are shown in

column 3. Similarly, the 9~ values obtained by applying the arc-sin

transformation to the column 2 batting averages are shown in column 4.

The Stein estimator value s that estimate the are shown in column 5,

S
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and the values obtained upon retransforisat ion via the arc-sin trans-
formation are given in column 6. The fol low ing calculations are exam-

~lt~s of the type of computations r.qu1 red . Note that th~ computations

are not at all complex .

For i — 2, f (Y I — 4S~ arc-sin (2(.37A) - 1) • —1.66. Therefore,n 2
x • -l.bb , and is entered u column L Similarly . w , - f (p

2
) —

4 ’
~~r:-sin (2(.298) - 1). This value is given ur column 4. Values

r x
1
, x

3
,...x1 , and 9

~
, ~~,...w 1 , axe obtained through simi lar

The basic equation for the Ste1i~ est1rstt~~z .~~~~~, w h i c h  allows us to

~~~~~ ith c~~m3 n: r .e r . . of 9, is slightly differer .~ from t~~ie expres-

~~~~ z~~vr us y . We estimate the iriti a l guess —

t v  ~ — x .~~, w h i c h  s h r i nk s all x t cwm r 1 !. The r~~s~~l t i r ~~ est imate

~~~~~~ .1~ ~~~~~~ :.t~:.t W ~~ qiven 
~~

• ~: • (~ - k ~ 3) 
tx~ - X). where •.~ • - ~~~~ ari d k — 3 —

(~ 
- ~) - - , because one parameter is estimated .

In r .e  err ; ~ri -~ 1 Bayes case , the 
~i’i rc~ riateness of this fo~~ula—

~ is used as the uri iased estimate for ~ and as

u . ~~~.vw i estimate for  1 
~ 

Therefore, in the case of the exam-

ple data r~ v~~j~~J in Table 1,

— • 
(—1. 35) + . . . +  (—4. 7~)) —

12

rhe value for ~ may in turn be used to compute V:

v — : ( x  — i) 2 
— (—1.35 — (3.10)1

2 
+ . • .+ (—4.70 — (_3.lO)) 2 — 13.81.

6



The Stein es t imates  for  
~ l •

~ ~ l2 are derived by substituting the

obtained values for ~ and V in the computational equutton :

•~ (x )  — —3.10 + (~ — 
12 _

3) (x~ 
— (—3.10) ) .350* . — 2.02.

For example, (X) .350(—l.35) — 2 .02  • — 2 . 4 9 .  This value and

tI~t~ value s for are listed in column 5 of Table 1. These values

ire finally retransformed to obtain the estimates of the “ true score’
ave rage for  each player in column 6.

The total squared prediction error for f
1(~~) is def ined as

2 ~~l 2
- + ... + - - 4.040. This value is obtained by

,;u~ trjc~~tng the column 4 value from the column 5 value for  each of

i_ 1 l~x y t r s , squaring the differences , and sus~~ing .

In the case of the sample mean, X, the total squared prediction

errcr is detined as ~(x , - 9 ) ~ m 15.135. This value is obtained by

subtracting the column 4 value from the column 3 value for  each of the

1.’ players, squar ing the differences, and sunusing .

The adequacy of S te in ’s estimator re la t ive  to the sample mean may

be detcr~rined bj computing their relative efficiency . The efficiency

of St exn s estima tor relat ive to the sample mean is def ined  as

-

m 3.

-

In this example , the efficiency is 3.746. In other words , Stein ’s esti-

mator is nearly four times as “efficient” in predicting “universe” or

“true” scores from observed (sample) scores as is the 1UZ.

7



Lim it e i  Trans la t ion  est imators

S t ei n  estimators achieve uniformly lower aqgreqate risk than the

MLE (sample mean ) , as shown above , but may result in increased risk t c~

.‘~Jividua1 components of 9. In particular , the Stein estimator may i~

i ’ ’  in esti.matirq 9 w i t h  vi xy large or very small values. Therefore ,
i

e ve: though I (XI provides better prediction in tht• aggregate , one may

;r.c~ sl y  err with individual components . A desirable compromise would

~ c to ha ve both good aggregate and good individua l prediction , where

i :~ : .t ~~1 individua l j rt .Jictlon would occur with minimal , it any , loss

aggregate prediction e t f i c : ,  :icy. This tradeoff may ho achiov.~d ly

~~ “limited translati.n est imators” that reduce individual risk f r

o~atlyin.; cases and result in minimal loss in a z o r o ~~.i’’ prediction .

u~~ i~~~•i translation estimators are irtroduced to r,• u~ ’

~~% !  ~O ~~e.i:. squared ~rethction errors associated w i t h  in~ ividua1 compo—

~‘r t s .  Shrinkage of values toward x values us acc~~ p1i~.h~~i th r.~.i~ h

~‘ “ ostimate . , 0~~~ s~~~ l , t 9 .  (Her* , .  — x  .in i . — f  ) .  is
i - l  1 1 3. 3. 1

defined ~ r be •~~~.
- l r’t;,’ to .~ j possible, so lonq as It does rct differ

h’.’ mo re ~~~ir , ‘~ 

~‘J {r~ - i (s)] standard devia t io n s  of

f rom x~~. 
~k — 

, ( s )  is .t constant , obtained from u ~~~~~~ of United

~~~ ~ 1 a t i nn  p q t i ~ ia~~nr ’~ ( r f rr~n r,. Norr i s , 1972) .

:~ x t a  from the baseball example wi l l  now be used to illustrate the

I ; :  ~~~ca 1•~ : of limited translation estirn ,~tc rc . Notice in Table 1 that

‘he !ur ’ ; t ~iy.’r ‘s season average far exceeds the ~oas n averages of

the remaining ;l~xyers , an example of an outlying case. In th baseball

example , k — 1.:, and V was t ~in1 to be 13.81 . There’ore , by f

values for D~ (.9) and D
~,~~~

(.8) from the Efron and Morris (197.:) table ,
1

it is found that (X) may .iiffer by no more than .75 from x . and

:~~~(x  may differ by no more .56 from x~~. In other words, by a~ ply-

ing it means that if ~ 
— x J  .75, then u s retained ; but i f

- ~~~ ~~ 
• •  is set equal to the value differing f rom x . by .75.

8
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T.iLle 2 contains va lues  fo r  the 12 players for 
~~~ 

‘i
i ’ ~~

and j~~~~
. Values for and are obtained as follows . Consider

the first player, x • — 1 .35, and .~~~ — —2.49; therefore x - —

I 4 ‘ 75 50 ;.* 
— -2 .10 , and 

~~~ 
— — 1.14 .56. Thus ,

-~~. ‘l. These v.ilues are retranslated to obtain ~~ — .34 b , and

— .~~e .  Notice that p — .346. Therefore, provides better

liejiction for this individua l than or ~~~~~~~~ Also note that

~~~~~ to the value than ~~ All three predic tion estimates are

c~ose~ than the MLE va jue t V - . 4  . In the case the second

it ; ’ ! , h~~u 0h  • the 1~ 
value became farther removed t ton as the• 3. 1

va~ ue o~ s decreases t rom 1 to .~~~ to .8. Therefore, the translations

.irt increasing the squared predictu n error for that player rather

• h i : .  .b !o.tsinO it. I n  t ?i .~ c~ise of the it th individual, .~~~ 
— x~ < .75

and - x < . ro , so the estimated va lue  r e m a in ’, t he same under trans-
3. 1

lations s — . . .ind s — .8.  Th~~ estimated value will not change until

— ~ .n .  11 th is I’art..’u 1.~r example , t h r ’  t rans i atin is in—

: xe . a s i ng t h e  er t  r t ..o. i Ii dual ~ om~~ :: .e: .  s by .r. t’.tng the dif

f e r e : . o e  be! we,’:. t h e  est ~ma ~ ‘ ‘nd the t rue ~ CO I ~~

1’ •
~~~ .i1 tn~.t t he  cfficiercv of :~~eun ’s estimator, ~r (Xl , roLi ’. u’.’.

• the ..w~ le mean w,t~ def i n e l  be

— ..
1 i

- -— -- - - — - - — - -  — 3. 4*
— —

The e f f i c i e n c y  of ~~~ l imited t r ans la t ion  e s t i m a t o r  r e l a t i v e  to

~~e sample mean is d e f i n e d  to be

- w
1 3.

:(.
‘ - 9 1 ’
i 3.

wb~ ch equals 3.077. Similarly, for  f~ (XI the relative efticiancy

equals 2.4€.. Therefore , in th is example 11(X) has the greatest effi-

ciency of t :e  three estima tors , ;l , j9
, and 

j.89
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Table 2

Batting Averages and Their Est imates

Y ( x ) 1 ~
;
9

(f ;
9 ) ;.8 (~~.8 ) ~~~

~4 ’ .4 .. ( — 1 .  t .  ~~~~~~ ( — 2 . 4 9 )  . 346 ( — 2 . 1 u )  .360 f— l . ’* l ) 1.14

. 178 (— 1 . 6 6 )  . 3 1 1  ( — 2 . 6 0 ) . 324 ( — 2 .41) .338 (-2.2.1 .94

‘ . 356 ( — 1 . 9 7 )  .303 ( — 2 . 7 1 )  .303 ( — 2 . 7 1 )  .316 ( — 2 . 5 3 )  .74

.3 3 3  ( — 2 . 28) .296 ( — 2 . 8 2 )  .2% ( — 2 .82) .2% ( -2 .82) .54

- ‘•~ .3 11 (—2 .60) .288 ( — 2 .93) .28~ ( - 2 . 9 3 )  .288 ( — 2 . 9 3 )  . 3 3

. 2 * 3  . 2 n ~ t — 2 .92) .282 ( — 3 . 01 )  .282 ( — 3 . 0 3 )  .282 ~~3 . 03) .11

..i . .4 4  ( — 3 . 6 0 )  .265 t-J.28) .265 ( — 3 . 2 8 )  .2f5 ( — 3 . 2 8 )  .L

L 1 .2.:.: (—3.~~5) . 258 ( — 3 . 4 0 )  .258 (—3.40) .258 ( — 3 . 4 0 )  .55

. 2 2 2  (— 3 .95) .258 ( — 3 . 4 0 )  .258 ( -3 .40 )  ..58 ( — 3 . 4 0 )  .55

( — 3 . ~~5) .2 58 ( — 3 . 4 1  .258 (—3.40) .258 (—3.40) .55

• .200 (—4. ~2 .249 ( - 3 . 5 3 )  .246 (—3.57) .234 (—3.76)

• f I t ,  .178 ( — 4 . ’ ’)  .24 1  ( — 3 . 6 6 ) .2 22 (— 3 . 9 5 )  .210 ( — 4 . 1 4 )

“~ I(k - l ) ( k  — (.fl —

[~
-
~

-
~

- ~ - 
~
.] %-:~

.
~ 

- .56

Relatlonshil Between Aqq~r.qate and Individua l Component M e n
SslUared Prediction Errors

Prior information ~~out certain ezamtnees can be used to produce
modified estimates of their true or unii’ere. scores . In this sense

:ur. estimator functions ~~ an ~.pirical Bayesian prediction i~~deL. This
procedure is most effectively used i4~en the •winee has highly credible
i t t  forma t ion about specific azami n.e., which is tantamount to havth g a
n i ;h  prior probability , in the usual Bayesian sense . A. a result , for
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th t s e ~.t z t i c u 1 a r  ex dmineer~, the t it of test scores to “ tru e ” sc.res may
be improved :on i .ierai1y by use of a lim ited translation estimator .
However,  ~~~~~~~~~ though the l imited  t rans la t ion  estimator yields a lower
.aN1eJatt’ squared prediction error fo r  the set of exam inees is a whole
th,ir, .1 ’es t h e  MLE (~~~imj 1.’ mean) , i t  may reduce t he  overa l l  e f f i c i e n c y
frost thi ’ of .~~~~X) by i r e ~ sin ’~ the mean squared prediction errors for
.) t J ie1 ex i m i n e e , in  ‘I c  (~i(u14tio:& . Therefore, overall efficiency , in-
div idua l  ~, pr.tz t’~l ( led ic t ion  “x  r o t  , and n o r  informa t 1 r ,  j v , t 3. lable on
sosie exami;ecs must all I .  ,n s  i.ie~~cd simu1taneous1~ to determine  what

,i :o~ lut . ion.  i f  i y is  to to’ performed .

If ‘•h , ’r v  i s  uni. . rr. ~~~~ x i n f o r m a t i o n  about all examinees in . the
score ~t 1st r r i u t i o n .  i t  ~na ’, Ii best t~ ’ max imize the aggregate efficiency .
If in i : f o z m at i .  n ,ut ’.ut true scores is available , it is impossible to
.i’.:,ts:, which z r . d t v i d u , t l s  h~tv e  t h t ’  :x . ’  ,it e s t  squared ~reuucr ion errors
• i . .’~ .tte d with then. There fo re , .i ;~~~i strategy would be t o  achieve
maxima l .t n ; r t ’ j .~ t .‘ eff i .

t :r  t n t .  r~r . i t  i i . i s  ~~~: . ‘ r, ’ x , i n . ’~i at the extremes of  the score
,t 1 ’;t i  tt ~~ ’ i n , r.t :. . I~~! tons “ : be 

~~~~~ 
lied t o  bring t h e  predicted score

in I ~~~~~~~~~~ tn. • ~: c of  sc~~!. that ni.;ht (‘.‘ expected , based upon
• t r ~ ’.I to:.. in ia. con( 1 i~ ;i : i n ; th i~ z t ’d u c t  ion , however. i nt’ nu:.t

• ‘.~ l 1 n~~ ’. l t n  e f t ’ ’ ’ on i~~;[e’.~.ut.’ efficiency. First , the t :,drvt tua l
. .or ’ • . .1:. i t  • j’.n~!ed co ri t h e . .~z , in line with cx(’e tatiOfls,

t r . .z  •. . ni t .  e t  i . i e n c ’, ’ n ’n  evalua t ed . ~r ,
• ‘~~. •~ .t n i in; rnt x Iriun .t ;; re; .i’ *‘ e ft i • i t : ’ ,t . i t he;: n ’. c. ?~

~, !  ‘ ;  f • x.t~ i n” ’. whom ( l i i ! informa tion Is aviul ~~1e u ! .
I u. ’nced I i- :. • ¶ y . ~ :. . i ~.s . A major  di ’ i S i  on 1 ‘. to determine

,t’., w~.~t t  ~. t : . ’ .  .c ; . — f  u ’ ~n ; for (.11 ’.  i c , z l a r  ~ x .ari~~n~’es t ,.c ,mec u:.
1 . ’  , : .. ‘ . t i : i t ; O , !~~‘..u.i .. rni:.iri.i l .i.tdi ’.ional in ~ ; v’’ri .o O ’ . ire

~~~~~~~~~~~~~~~~~~ hi~;h cos t t the • v .’r.tl l ~ u . ;r e 1.i’.. •~~ticiency .

A ca ... i n ~~ in t  is whe ; :  ‘~~~,• “true • , T i ,  I e .  • f a l l  between the
M;0 t n t  ~~~~~~~~ l u ’ .  whe n • 1 (~~) t..lla i ’t w e e : ,  : .‘  t r u ’  score and the  sax ’9 i i ’
ni’ ,u ; . .  Slur:  n i c i : : ; the i i  t f e r e nc e  between hi’ s,~m ;ie ri.’ ,u : .  and .

‘~~ (~~) by a~-
1oit  ion a iru t e 1  ra:.slaticr i’~.t inat r , .°~ (~~) , actually increases

~nir•’d red ,..’! ion error t o t  lou ’ examinee . The re,agonunq in the
• ,i~ .~~~’he:. a l l  n o r  in f or m a t i o n  on an examunee does no t  f a l l  between the

I.’ mc,ln) i i i  , 1

T f. , ’i .,  ire a l so  ..“.‘c xnu i ne n~~ i i . s juca l  considera t  ionn  in r elat inq
‘tti.: ’.’t . I : . t  ‘ ‘rue ” score Cs!  Im,a ! . ’s .  Initial trials may underestimate

.u ‘~tr~~c ” score i f  the learning curve has not yi~ reached asymptote in
‘hi s r uml en of t e st  trials. Likewise, fatigue fr~~ th. last group of
test ~~~ e :1i’~ o uld produce an underestunate of the true’ score.

1.1
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Many factors need to be considered in relating observed scores and
true scores, in apply ing limited translations , in optimizing good m di-
vidual and good aggregate prediction, and in using prior information on
specific examinees productively. The usefulness of Stein ’s estimator
in behavioral and educational research largely depends upon how wel l
these considerations are addressed ,

SUMMARY

The s ci e n ti f i c  implications and pr actical applications of the Stein
estimator approach for estimating true scores from observed scores are
of potentially great importance . The conceptual complexity is not much
greater than that required for more conventional regression models. The
empiri cal Bayesian aspect allows the examiner to incorporate his/her own
degree of ~‘rior information about selected exa*i nees . This approach
.iIl’ws for i more accurate estimation of true scores , with the corollary
of us ing fewer test items to achieve those true score estimates . Efron

m d  P~~r r i s  ( 1975 )  make the point that “there is l i t t le  penalty for using
the rules discuased here because they cannot give lar ge total mean square d
•~rror than the P412 . . . .“ This assurance may be a su f f i c i en t  reason for
more careful examination of the u t i l i t y  of the Stein estimator and its
: t~~ t t ~~d t ransla t ion estimators as they apply to behavioral and social
. cie r i c e  research .
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